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FEATURE

La importancia de comprender el 
sesgo inducido por el paisaje en el 
posicionamiento de sensores uSGS: 
implicaciones y soluciones para los 
administradores
RESuMEN: la temperatura y flujo de agua son propie-
dades fundamentales de los ecosistemas fluviales, sobre los 
cuales se toman diversas decisiones de manejo en cuanto 
a recursos dulceacuícolos. Los sensores del Estudio Ge-
ológico de los Estados Unidos de Norte América (EGEU) 
son la fuente disponible más importante de datos de flujo 
de agua y temperatura a nivel nacional, pero el grado 
al cual los sensores son representativos de los atributos 
paisajísticos de una población más grande de ríos, no 
ha sido analizado a profundidad. Se identificaron sesgos 
sustanciales en siete atributos paisajísticos en una o más 
regiones a lo largo de las zonas limítrofes de los Estados 
Unidos de Norte América. Los ríos de cauce pequeño (<10 
km2) y aquellos localizados en regiones elevadas no estuvi-
eron adecuadamente representados, y los mayores sesgos 
se observaron en los sensores que miden la temperatura 
del agua y en las regiones áridas.  Los sesgos tienen el po-
tencial de alterar de manera fundamental las decisiones de 
manejo, y como mínimo este error tiene que reconocerse de 
forma precisa y transparente. Se plantean tres estrategias 
que buscan tanto reducir el sesgo o limitar los errores que 
surgen de dicho sesgo, como ilustrar cómo una estrategia, 
suplementando los datos EGEU, puede reducir el sesgo de 
manera importante.
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ABSTRACT: Flow and water temperature are fundamental 
properties of stream ecosystems upon which many freshwater 
resource management decisions are based. U.S. Geological 
Survey (USGS) gages are the most important source of stream-
flow and water temperature data available nationwide, but the 
degree to which gages represent landscape attributes of the 
larger population of streams has not been thoroughly evalu-
ated. We identified substantial biases for seven landscape at-
tributes in one or more regions across the conterminous United 
States. Streams with small watersheds (<10 km2) and at high 
elevations were often underrepresented, and biases were greater 
for water temperature gages and in arid regions. Biases can 
fundamentally alter management decisions and at a minimum 
this potential for error must be acknowledged accurately and 
transparently. We highlight three strategies that seek to reduce 
bias or limit errors arising from bias and illustrate how one 
strategy, supplementing USGS data, can greatly reduce bias. 

INTRODuCTION

Streamflow and water temperature are fundamental proper-
ties of fluvial systems that structure aquatic communities, de-
termine environmental services, and are susceptible to human 
activity and climatic processes. Streams are often characterized 
by flow regime (Poff et al. 1997), which determines the move-

ment of energy within stream channels (Leopold et al. 1964), 
connectivity to floodplains (Tockner et al. 2000), availability 
and diversity of instream habitats (Jowett and Duncan 1990), 
and ultimately the structure of lotic communities (Poff and 
Allan 1995). Water temperature is a key determinant of ecologi-
cal processes, such as stream metabolism (Demars et al. 2011) 
and organism bioenergetics (Kitchell et al. 1977), and plays a 
primary role in influencing distributions of aquatic organisms 
due to varied thermal tolerances of individual species (Magnu-
son et al. 1979). 

Just as streamflow and water temperatures influence dis-
tribution and abundance of fluvial fishes, flow and temperature 
regimes are themselves influenced by both natural and anthro-
pogenic landscape attributes (Frissell et al. 1986; Poff et al. 
1997). Climatic and landscape attributes that influence stream-
flow and temperature regimes include precipitation and air tem-
perature, catchment area, soil and bedrock permeability, valley 
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constraint, catchment aspect and elevation, and vegetative cover 
over multiple spatial extents (Isaak and Hubert 2001; Morris et 
al. 2009; McManamay et al. 2011). Similarly, anthropogenic 
activities can confound influences of natural controls, and their 
effects on streamflow and temperature have been widely docu-
mented (e.g., Paul and Meyer 2001; Poole and Berman 2001; 
Poff et al. 2006). 

Management of stream and river ecosystems and fisher-
ies, along with their interconnected lake and reservoir systems, 
often relies on our ability to characterize both streamflow and 
temperature regimes throughout regions of interest. To achieve 
this end, streamflow and water temperature data must be moni-
tored using a statistically valid sampling strategy that ensures 
representation of regional variation in natural and anthropo-
genic landscape attributes (e.g., U.S. Environmental Protection 
Agency Environmental Monitoring and Assessment Program, 
USEPA 2010), if the goal is to characterize hydrologic and ther-
mal properties of all streams in a region of interest. However, 
this goal may be difficult to achieve in many regions, because 
streamflow and water temperature data are rarely collected in 
such a systematic manner.

The stream gage network of the U.S. Geological Survey 
(USGS) is the main source of nationally available standardized 
data for characterizing streamflow and temperature regimes. 
The USGS gage network was designed to collect continuous 
streamflow data to serve a number of purposes, which include 
water management, flood monitoring, recreation, and scientific 
studies (National Hydrologic Warning Council 2006). Water 
temperature is also monitored at a smaller subset of gages. 
Although water temperature data are often collected by other 
agencies or researchers, those data are often not readily avail-
able, because they must be compiled into standardized formats 
(e.g., Isaak 2011). Though USGS gages provide data that char-
acterize large numbers of streams throughout a variety of large 
spatial units (e.g., basins, entire states, and ecoregions), the gage 
network was not designed to support statistically valid, regional 
inferences. For example, at the national scale, gages are dispro-
portionately located near dams, in areas dominated by human 
influences, and on larger rivers (Poff et al. 2006; Falcone et 
al. 2010). Such biases in gage locations may compromise op-
portunities to extrapolate from gage data to all streams in a re-
gion. However, these landscape biases have not been formally 
quantified for USGS gage locations and there has been little 
systematic discussion of related implications for research and 
management.

To address these challenges and facilitate the use of stream-
flow and water temperature data across large regions, we as-
sess and quantify landscape biases for the complete USGS 
gage network within the conterminous United States. Our 
decision to focus on the conterminous United States stems 
from a growing federal interest in identifying and prioritiz-
ing management actions to address landscape-scale changes 
(e.g., National Fish Habitat Partnership, www.fishhabitat.org; 
U.S. Fish and Wildlife Landscape Conservation Cooperatives, 
www.fws.gov/landscape-conservation/lcc.html). We also assess 

landscape biases among different ecoregions. We then discuss 
implications for using gage data to make inferences in a re-
search and management context in light of landscape biases. 
Finally, we highlight three strategies to address landscape bias 
and demonstrate how one of these strategies, compiling supple-
mental data, can greatly reduce landscape bias.

METHODS—IDENTIFYING BIASES

We assessed the distribution of USGS gages throughout 
the conterminous United States (national extent) and within the 
nine ecoregions of Herlihy et al. (2008): Coastal Plains (CPL), 
Northern Appalachians (NAP), Northern Plains (NPL), Southern 
Appalachians (SAP), Southern Plains (SPL), Tall Grass Plains 
(TPL), Upper Midwest (UMW), Western Mountains (WMT), 
and Xeric West (XER; Figure 1). These physiographically di-
verse ecoregions were selected for use in this study because they 
have been used in prior investigations to characterize the current 
condition of lotic fish habitats (Esselman et al. 2011) as well as 
an ongoing investigation to identify potential effects of climate 
and land use changes on these habitats (FHCLC 2011). We used 
the 1:100,000 NHDPlusV1 as the base spatial layer or “census 
population” for data management and analyses, where the finest 
spatial unit was the individual stream reach (USEPA and USGS 
2005). Data sets linking stream reaches to physical or anthro-
pogenic landscape attributes were previously compiled as part 
of the National Fish Habitat Partnership–National Fish Habitat 
Assessment (Esselman et al. 2011). Landscape attributes were 
summarized at the watershed scale, which includes all land area 
draining to a given stream reach.

The locations of USGS gages were obtained in October 
2010 from the National Water Information System (http://water-
data.usgs.gov/nwis). Water temperature gages for the nation and 
nine ecoregions were the subset of USGS gages with recorded 
water temperatures. We included all gages where streamflow or 
water temperature data have ever been collected. It is important 
to note that our results may not reflect current landscape bias 
in USGS gages because some gages included in our study are 
no longer operational. However, historic gage data are still used 
for some objectives and including all gages enables our study 
to provide a baseline assessment of bias that is likely lower than 
all other subsets (e.g., currently active gages). 

We selected three physical landscape attributes to describe 
natural variation among stream reaches: watershed area (km2), 
mean watershed elevation (m), and mean watershed slope (de-
gree; Table 1). We also selected three percentage measures of 
land cover as metrics of human disturbance: natural (as sum of 
forest, grassland, and shrubland), agricultural, and urban (Table 
1). These physical and land cover metrics can influence water 
temperature, streamflow, and distributions of fishes (e.g., Bren-
den et al. 2008), macroinvertebrates (e.g., Tsang et al. 2011), and 
algae (e.g., Cao et al. 2007) throughout the conterminous United 
States. We followed methods in Wagner et al. (2008) to identify 
potential sampling biases for each of the landscape attributes 
by comparing cumulative frequency distributions (CFDs) of the 
sample of reaches containing streamflow or water temperature 
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7DEOH����1DPHV�DQG�VRXUFHV�RI�QDWXUDO�DQG�DQWKURSRJHQLF�ODQGVFDSH�DWWULEXWHV�WKDW�ZHUH�XVHG�LQ�DQDO\VHV��7KH�ODQG�FRYHU�FRGH�FROXPQ�OLVWV�WKH�
reference numbers from the source data set used to calculate land cover types used in our analyses. 

Attribute Resolution Units Source Land cover code

Watershed area 1:100,000 km2 Calculated using NHDPlusV11 NA

Mean slope 30 m degrees National Elevation Dataset2 NA

Mean elevation 30 m m National Elevation Dataset2 NA

Urban land cover 30 m % of network catchment NLCD 2001 Version 13 21 + 22 + 23 + 24

Agricultural land cover 30 m % of network catchment NLCD 2001 Version 13 81 + 82

Natural land cover 30 m % of network catchment NLCD 2001 Version 13 41 + 42 + 43 + 52 +71

1�86(3$�DQG�86*6��������
��86*6��������
3 �+RPHU�HW�DO����������

)LJXUH����0DS�RI�WKH�FRQWHUPLQRXV�8QLWHG�6WDWHV�VKRZLQJ�WKH�QLQH�HFRUHJLRQV�DQG�RQH�IRFXVHG�PDQDJHPHQW�UHJLRQ�XVHG�LQ�DQDO\VHV��WKH�&RDVWDO�
3ODLQV��&3/���1RUWKHUQ�$SSDODFKLDQV��1$3���1RUWKHUQ�3ODLQV��13/���6RXWKHUQ�$SSDODFKLDQV��6$3���6RXWKHUQ�3ODLQV��63/���7DOO�*UDVV�3ODLQV��73/���8SSHU�
0LGZHVW��80:���:HVWHUQ�0RXQWDLQV��:07���;HULF�:HVW��;(5���DQG�WKH�(DVWHUQ�%URRN�7URXW�-RLQW�9HQWXUH�UHJLRQ��

gages to those of the census population of all stream reaches in 
each region. We performed statistical analyses and created plots 
within the R programming environment (R Development Core 
Team 2012).

The interpretation of sampling bias from CFD curves is 
as follows: (1) generally unbiased samples have a CFD that 
matches closely with the census population CFD; (2) sample 
CFD deviations above the population CFD represent oversam-

pling; and (3) CFD deviations below the population CFD repre-
sent undersampling. Sample CFDs may begin at higher or end at 
lower values of a landscape attribute than the census population, 
which signifies that some values of the attribute are not repre-
sented by USGS gages (i.e., these extreme attribute values are 
entirely unsampled). Erratic, step-like CFDs result whenever 
the addition of one or a few gages results in a large increase in 
cumulative frequency and are usually associated with a small 
number of gages.
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For each landscape attribute, we assessed the magnitude of 
biases for streamflow and water temperature gages. First, we 
calculated the maximum difference in cumulative frequency 
between the population and the sample for each landscape at-
tribute (i.e., the greatest vertical difference between population 
and sampling CFDs). We then summarized the magnitude of 
bias by classifying the maximum difference using arbitrarily 
defined cutoffs: “low” (maximum difference between popula-
tion and sample CFDs < 0.1), “moderate” (maximum difference 
EHWZHHQ�SRSXODWLRQ�DQG�VDPSOH�&)'V�������DQG���������DQG�
“high” (maximum difference between population and sample 
&)'V���������6HFRQG��ZH� LGHQWLILHG�&)'V�ZKHUH� WKH�VDPSOH�
range was less than 90% of the population range and refer to 
these as “notably unsampled.” 

RESuLTS—IDENTIFIED BIASES

Of the 2,607,304 census population stream reaches in the 
conterminous United States, USGS gaging stations monitored 
streamflow for 20,362 (0.78%) reaches and water temperature 
for 1,673 (0.06%) reaches. The UMW had the greatest percent-
age of stream reaches with streamflow gages (2.66%) and the 
SAP had the lowest (0.25%). The percentage of stream reaches 
with temperature gages was much lower, with the SPL having 
the highest (0.13%) and the NPL the lowest (0.02%). Landscape 
characteristics of all census population stream reaches, includ-
ing gaged reaches, are provided in Table A1 for the national 
extent and all ecoregions (see http://fisheries.org/appendices). 

We present a subset of CFDs to illustrate typical biases for 
each landscape attribute; the full set of CFD plots for each at-
tribute and all regions is available online (Figures A1–A6, see 
http://fisheries.org/appendices). Streamflow and water tempera-
ture sampling CFDs indicated that small (i.e., <10 km2) and 
LQWHUPHGLDWH��L�H�������DQG������NP2) sized watersheds were 
highly underrepresented or notably unsampled at the national 
extent and in most ecoregions (Figure 2a, Table 2). Large wa-
tersheds (i.e., >10,000 km2) were well represented in all regions 
(Figure A1, see http://fisheries.org/appendices), and biases were 
higher for water temperature gages than for streamflow gages 
in all regions. 

Mean watershed elevation was generally better represented 
than watershed area for both streamflow and water temperature 
gages (Table 2; Figure 2b). However, relatively higher eleva-
tions were notably unsampled by streamflow gages in all re-
gions, except the national and TPL, and by water temperature 
gages in all regions (Table 2). For example, the NPL had the 
highest magnitude of biases for both streamflow and water tem-
perature gages, and high elevations (>2,200 m) were notably 
unsampled by water temperature gages (Figure 2b). 

Urban land cover CFDs for streamflow gages showed mod-
erate biases in nearly all regions and high bias in only the XER 

ecoregion, whereas biases for water temperature gages were 
high in four ecoregions (Table 2). Biases in most regions 
were due to undersampling of all but the highest percentages 
of urban land cover, and this tendency was greater for water 
temperature gages (see national, Figure 2c). The magnitude 
of undersampling was lowest in the NPL, but intermediate to 
high urban land cover was notably unsampled by streamflow 
and water temperature gages in this ecoregion (Figure 2c).

Biases for natural land cover were moderate in most 
regions for both streamflow and water temperature gages 
(Table 2). No region had low bias for streamflow gages, but 
the UMW had low bias for water temperature gages. The 
most common bias was oversampling areas with relatively 
high natural land cover, but the magnitude differed among re-
gions. For example, at the national extent, streamflow gages 
oversampled natural land cover greater than 80%, whereas 
in the SAP streamflow gages oversampled natural land cover 
greater than 20% (Figure 2d). In contrast, only natural land 
cover greater than 85% was oversampled in the SPL, while 
almost all of the range was undersampled (Figure 2d).

Most regions had low or moderate landscape bias for 
agricultural land cover for streamflow gages and moderate 
or high bias for water temperature gages (Table 2). Biases in 
most regions were due to oversampling across a wide range 
of intermediate to high agricultural land cover (e.g., SPL), 
undersampling low agricultural land cover (e.g., XER), or 
a combination of these two (e.g., national; see Figure 2e). 
Stream reaches with higher values of agricultural land cover 
(>80%) were notably unsampled by streamflow gages in 
the NAP ecoregion and by water temperature gages in four 
ecoregions (e.g., SPL; Figure 2e).

DISCuSSION

Our analyses identified substantial landscape biases in 
streamflow and water temperature gages across several land-
scape attributes in one or more regions. Landscape biases 
were lower for flow gages than for temperature gages across 
all landscape attributes, partly because streamflow data are 
collected at more USGS gages than water temperature data. 
Biases were also generally greater within arid ecoregions 
of the western United States, where a lower percentage of 
streams were gaged. We found that the greatest landscape 
bias existed for watershed area, and this bias toward sam-
pling larger rivers has been previously noted (e.g., Poff et al. 
2006; Falcone et al. 2010). Higher elevation streams were 
entirely unsampled in some regions (e.g., NPL), which may 
be particularly important because shifts in air temperature 
and precipitation resulting from climate and land use changes 
may have pronounced effects on small, high elevation stream 
systems (Beniston et al. 1997). Large biases in the arid 
ecoregions of the western United States (e.g., XER) are also 
concerning because many of these streams contain endemic 
fishes of conservation concern and are already impaired from 
dams, water extraction, and nonnative fishes (Olden and Poff 
2005). 

:H�IRXQG�WKDW�WKH�JUHDWHVW�ODQGVFDSH�ELDV�H[LVWHG�IRU�
watershed area.

http://fisheries.org/appendices
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Landscape attribute
Landscape bias
Low Moderate High

Streamflow data

Watershed area None None 80:��&3/��1$3��:07��National,�6$3��;(5��73/��
63/��13/

Mean elevation 1$3��80:��:07��National, TPL, 6$3��&3/ 63/��;(5��13/ None
Mean slope 6$3��&3/��:07��1$3��73/��80: 63/��1DWLRQDO��;(5��13/ None

Natural land cover None SPL, UMW, SAP, National, CPL, NAP, TPL, NPL WMT, XER

Urban land cover SPL 13/, National, UMW, WMT, NAP, TPL, SAP, CPL XER

Agricultural land cover SAP, National, CPL, UMW WMT, SPL, NAP, TPL, 13/��;(5 None

Water temperature data

Watershed area None None 80:��6$3��1$3��National,�&3/��73/��WMT,�63/��
;(5��13/

Mean elevation National, SAP XER, SPL, WMT, UMW, NAP, TPL CPL, NPL

Mean slope National, WMT SAP, TPL, SPL, UMW, CPL, XER NPL

Natural land cover UMW TPL, National, 1$3� SPL, &3/� SAP 13/� WMT, XER

Urban land cover None 13/� SPL, TPL, National, :07��1$3 CPL, SAP, UMW, XER

Agricultural land cover SAP 1$3� CPL, UMW, National, WMT, SPL, 73/ 13/��;(5

Are Biases Relevant?

Our results show that streamflow and water tempera-
ture data from USGS gages do not adequately represent key 
landscape attributes throughout the nation and in one or more 
ecoregions. The resulting landscape biases will be relevant to 
research and management efforts that attempt to characterize 
streamflow or water temperature within ungaged streams (i.e., 
to extrapolate from gaged to ungaged streams). If inferences are 
restricted to gaged streams, then the landscape biases reported 
here are irrelevant. However, many research and management 
efforts seek to draw inferences regarding large regions, and 
these inferences can be fundamentally altered by landscape bias. 

When landscape biases are determined to be relevant, the 
next step is to assess the magnitude of biases for landscape at-
tributes of interest. We have provided an example of how CFDs 
and selected landscape attributes can be used to characterize 
landscape bias in a rigorous and quantitative manner. However, 
we caution that our results may not be representative of other 
regions or of other landscape attributes. 

Addressing Bias

At a minimum, landscape biases and their potential for in-
troducing error must be acknowledged accurately and transpar-
ently when gage data are used to inform management decisions. 
However, a simple acknowledgement of bias may not always 
be sufficient. Thus, we also discuss three approaches that seek 
to reduce biases or limit associated errors in light of existing 
biases. 

1. Limit or qualify inferences. The first strategy for addressing 
biases in USGS gage data is to limit or qualify inferences 

for regions or types of streams with large landscape biases. 
To illustrate this strategy, consider the biases and CFDs for 
agricultural land cover (Figure 2e). For example, landscape 
biases in water temperature data may be considered “too 
great” for the entirety of the NPL and XER ecoregions, and 
analyses could be limited to other ecoregions where data are 
more representative of agricultural land cover. Alternatively, 
inferences in the NPL and XER regions could be qualified 
to incorporate potential errors arising from bias in these re-
gions. Similarly, this strategy can also be employed within 
a single region to limit or qualify inferences to subsets of 
streams based on magnitudes of bias. For example, in the 
XER ecoregion one may decide that water temperature gage 
biases are too great for streams with less than 30% agricul-
tural land cover (Figure 2e) and either qualify inferences 
for this subset of streams or limit inferences to streams with 
more agricultural land cover.

2. Compile supplemental data. The second strategy is to 
compile supplemental streamflow and water temperature 
data from sources other than USGS gages. These supple-
mental data will help to reduce landscape bias when ad-
ditional landscape variation is represented. Potential 
sources of supplemental data include Federal Energy 
Regulation Commission–licensed hydropower projects, 
National Pollutant Discharge Elimination System permit 
compliance monitoring data, U.S. EPA STORET, uni-
versities, watershed organizations, and state agencies.  
To illustrate the use of supplemental data, we appended the 
USGS water temperature data with data from federal, state, 
university, watershed organization, and two previously pub-
lished (Gardner et al. 2003; Martin and Petty 2009) sources 
for a focused management region, the Eastern Brook Trout 
Joint Venture region (EBTJV; Figure 1). We included all 
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water temperature sampling locations where data were col-
lected at a repetitive, systematic interval (hourly, bi-hourly, 
etc.) and used the same methods described above to create 
new CFD plots. A total of 1,480 additional stream reaches 
with temperature data were available for the EBTJV, and 
landscape biases for some landscape attributes were greatly 
reduced (e.g., watershed area; Figure 3). 

3. Modeling. The final strategy is to use correlative, spatial, 
or mechanistic models in place of empirical streamflow 
and water temperature data. These models can then be used 
to support resource management decisions for many or all 
streams throughout a given region. Correlative models have 
been used widely to predict streamflow (e.g., Vogel et al. 
1999) or water temperature (e.g., Mohseni et al. 1998; Weh-
rly et al. 2009) at unsampled locations based on empirical 
relationships with variables that are known and typically 
easy to measure (e.g., precipitation, air temperature). Spa-
tial models incorporate distance and spatial connectivity 
between sample locations to predict streamflow or water 
temperature and may also include correlative relationships 
with other predictors (e.g., Peterson et al. 2007). For ex-
ample, a spatial stream temperature model may accurately 
generalize to undersampled headwater reaches by interpolat-
ing upstream temperatures based on data from downstream 
gages. Finally, mechanistic (also referred to as deterministic 
or process-based) models may reduce landscape bias by pre-
dicting streamflow or water temperature based upon physical 

relationships with landscape attributes and other controlling 
factors (e.g., Soil & Water Assessment Tool, Arnold et al. 
2012; heat budget analysis, Johnson 2004). Each of these 
types of models can, in some instances, be a powerful tool 
for estimating flow and/or temperature in ungaged stream 
reaches. However, it is important to note that landscape bias 
may be retained in model predictions if biased gage data are 
used for model calibration or validation purposes. Further, 
sufficient streamflow and/or water temperature data may 
not always be available to develop models that can generate 
accurate predictions in unsampled streams. In such cases, 
models that use climatic and/or landscape attributes as sur-
rogates of water temperature and/or streamflow can inform 
management decisions in place of gage data. For example, 
thermally suitable habitat for Trout has been estimated from 
correlative models using mean July air temperature in Wyo-
ming (Keleher and Rahel 1996) and elevation in the south-
ern Appalachians (Flebbe et al. 2006) as surrogates of water 
temperature. 

Strategies to Reduce Bias

Acknowledging and addressing existing landscape biases 
are only temporary, objective-specific solutions for using USGS 
streamflow and water temperature data sets. In the long term, 
a strategy to increase the representativeness of landscape attri-
butes is needed to increase the utility of available data for ad-
dressing pressing objectives, such as predicting climate and land 

)LJXUH����&XPXODWLYH�IUHTXHQF\�GLVWULEXWLRQV�LOOXVWUDWLQJ�WKH�LQIOXHQFH�RI�LQFOXGLQJ�VXSSOH-
mental data on landscape biases for watershed area (km�) in the Eastern Brook Trout Joint 
9HQWXUH��(%7-9��UHJLRQ��7KH�VROLG�JUH\�OLQH�UHSUHVHQWV�WKH�SRSXODWLRQ�RI�VWUHDP�UHDFKHV��WKH�
ORQJ�GDVKHG�EOXH�OLQH�UHSUHVHQWV�UHDFKHV�ZLWK�VWUHDPIORZ�JDJHV��WKH�RUDQJH�GDVK�GRW�OLQH�
UHSUHVHQWV�UHDFKHV�ZLWK�ZDWHU�WHPSHUDWXUH�GDWD�IURP�86*6�JDJHV�RQO\��DQG�WKH�VKRUW�GDVKHG�
SLQN�OLQH�UHSUHVHQWV�UHDFKHV�ZKHUH�VXSSOHPHQWDO�WHPSHUDWXUH�JDJHV�ZHUH�LQFOXGHG�LQ�DGGL-
WLRQ�WR�86*6�JDJHV��
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use change effects on stream hydrologic and thermal regimes. 
Construction of additional USGS gages is unlikely to greatly 
reduce landscape bias because financial resources are limited 
and gage locations are usually not selected solely to capture 
variation in landscape attributes. However, if the construction of 
new or redistribution of existing USGS gages becomes feasible, 
underrepresented streams identified herein could be targeted as 
one way of reducing landscape bias. A more cost-effective way 
to reduce landscape biases in available water temperature data is 
to expand water temperature monitoring to a greater proportion 
of existing USGS gages. A second cost-effective way to reduce 
landscape bias and increase the utility of available data is to 
coordinate supplemental data collection efforts and offer these 
data in standardized formats. Efforts of this type are already un-
derway for water temperature data in some regions (e.g., Isaak 
2011) and can greatly reduce landscape biases as we demon-
strated in the EBTJV region.

CONCLuSIONS

We found that streamflow and water temperature data from 
USGS gages do not adequately represent key landscape attri-
butes throughout the conterminous United States or within se-
lect ecoregions, which can lead to errors when attempting to 
infer or predict hydrologic or thermal properties of all streams 
in a region of interest. The greatest source of bias was unders-
ampling of small (i.e., <10 km2) WR�LQWHUPHGLDWH�VL]HG��L�H�������
and <500 km2) watersheds, but all landscape metrics showed 
large biases in one or more regions. Biases in USGS gage data 
were generally greater in arid regions of the Western United 
States and were almost always greater for water temperature 
data than streamflow data, in part because fewer USGS gages 
monitor water temperature. Our study provides a useful over-
view of landscape bias throughout the conterminous United 
States but likely underestimates landscape biases in currently 
active USGS gages because we used all gages where any 
streamflow or water temperature data had ever been collected. 
More restrictive subsets (e.g., currently active gages) are likely 
to have greater biases, and these biases must be quantified on 
a case-by-case basis. Reducing landscape biases in USGS data 
will require a comprehensive strategy, and our results suggest 
that making data from supplemental sources available in stan-
dardized formats can reduce biases and could be one part of this 
strategy. Despite inherent landscape biases, uniformly collected 
and reported USGS data remain the most valuable source of 
streamflow and water temperature data for the United States and 
will continue to be used widely to support resource management 
efforts. Nevertheless, landscape biases can fundamentally alter 
inferences and must be acknowledged as a potential source of 
error when gage data are used to support management decisions. 
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